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• A multiple regression model was devel-
oped to explore the drivers of the initial
growth rate of the COVID-19.

• Non-pharmaceutical interventions (NPI)
as well as climatic, social, and demo-
graphic variables were considered in
the model.

• NPI are not strongly associated to the ini-
tial growth rate of COVID-19.

• Social-demographic variables are
strongly associated to the initial growth
rate of COVID-19.

• Climatic variables, like pollution but not
temperature, are strongly associated to
the initial growth rate of COVID-19.
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OnMarch 11, 2020 theWorld Health Organization announced that the COVID-19 disease developed into a global
pandemic. In the present paper, we aimed at analysing how the implementation of Non-Pharmaceutical
Interventions (NPI) as well as climatic, social, and demographic variables affected the initial growth rate of
COVID-19. In more detail, we aimed at identifying and assessing all the predictors in a whole picture of the
COVID-19 outbreak and the effectiveness of the response of the countries to the pandemic. It can be expected,
indeed, that there is a subtle and complex interplay among the various parameters. As such, we estimated the
initial growth rate of COVID-19 for countries across the globe, and used a multiple linear regression model to
study the association between the initial growth rate and NPI as well as pre-existing country characteristics
(climatic, social and demographic variables measured before the current epidemic began). We obtained a
mean initial growth rate of 0.120 (SD 0.076), in the range0.023–0.315. Ten (8pre-existing country characteristics
and 2 NPI) out of 29 factors considered (21 pre-existing country characteristics and 8 NPI) were associated
with the initial growth of COVID-19. Population in urban agglomerations of more than 1 million, PM2.5
air pollution mean annual exposure, life expectancy, hospital beds available, urban population, Global
Health Security detection index and restrictions on international movement had the most significant effects on
the initial growth of COVID-19. Based on available data and the results we obtained, NPI put in place by govern-
ments around the world alone may not have had a significant impact on the initial growth of COVID-19. Only
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restrictions on international movements had a relative significance with respect to the initial growth rate,
whereas demographic, climatic, and social variables seemed to play a greater role in the initial growth rate of
COVID-19.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

OnDecember 31, 2019, theWuhanMunicipal Health Commission in
mainland China reported a group of cases of pneumonia with unknown
aetiology (later termed as Coronavirus Disease 2019, COVID-19) in
Wuhan, Hubei Province (WHO, 2020). However, it has been hypothe-
sized that the first human infectionsmay have occurred earlier thanDe-
cember, in November 2019 or even before then (Andersen et al., 2020).
This outbreak was likely to commence in a poultry and seafood market
in a citywith a population of 11million people (IPAC, 2020). The earliest
59 suspected cases were admitted to Jinyintan Hospital which was des-
ignated to isolate and treat them. On January 23, 2020, authorities in
China closed off the city. Planes, trains, buses, subways and ferry ser-
vices were suspended (IPAC, 2020). The city of Huanggang, China, was
also placed on lock-down. On January 24, 2020 travelling to 10 cities
was restricted affecting 50 million people. Public transit and other
modes of transportation were also suspended in neighbouring cities
(IPAC, 2020).

The responsible infectious agentwas identified in an emerging coro-
navirus, named as “Severe Acute Respiratory Syndrome Coronavirus
Type 2” (SARS-CoV-2). Similar to SARS-CoV and MERS-CoV, with
which it shares a common genetic basis, the emerging coronavirus has
a zoonotic origin, with a human-to-human transmission (Tiwari et al.,
2020). On January 30, 2020, theWorld Health Organization (WHO) an-
nounced a public health emergency of international concern (PHEIC)
due to the novel coronavirus. This decision was made due to concern
of further global spread after cases being confirmed in 4 other countries
(Japan, Vietnam, Germany, and the United States) (WHO, 2020). From
February 5 up to late March 2020, forty major airlines have cancelled
or reduced flights to China. On February 19 and 21, 2020, coronavirus
cases were reported in Italy and Iran, without a direct relation to
China. Travel restrictions were imposed in South Korea and Iran as
well (IPAC, 2020). On March 11, 2020 the WHO announced that the
COVID-19 disease had developed into a global pandemic (WHO, 2020).

As of May 13, 2020, 188 countries were affected by the virus. In an
effort to slow the spread of COVID-19 and flatten the epidemiological
curve, given the absence of effective vaccines and drugs and the quickly
contagious nature of the virus (Ferguson et al., 2020; Imai et al., 2020)
many countries have responded by implementing non pharmaceutical
interventions (NPI) which include: school and workplace closures, can-
cellation of public events and gatherings, stay-at-home orders, and in-
ternational and domestic travel restriction. Even if single measures
alone are not enough, a comprehensive package of interventions can re-
sult in a significant control of the disease (Nussbaumer-Streit et al.,
2020; Sjödin et al., 2020). However, due to socio-economic and political
factors, various countries have decided to enforce NPI in a less stringent
and intensive way, in the effort to cause less economic damages and
losses, choosing a mitigation strategy (which slows but not eliminates
the spread of the virus) rather than a suppression one (aimed at eradi-
cating the disease) (Ferguson et al., 2020; Imai et al., 2020).

Besides the various responses to the pandemic in terms of public
health policies, differences in the outcome of flattening the curve
could be explained taking into account an array of climatic, social and
demographic parameters, including temperature, weather (Tosepu
et al., 2020) and pollution (Copat et al., 2020; Riccò et al., 2020), country
development, income and gross domestic product (Lippi et al., 2020;
Mukherji, 2020), and population ageing (Petretto and Pili, 2020),
among others. Concerning climatic factors, a positive association
2

between COVID-19 cases and 14-day lagged temperature was found,
whereas a negative association between COVID-19 cases and 14-day
lagged wind speed could be detected. Furthermore, higher rates of
COVID-19 cases were reported where absolute humidity was in the
range 5–10 g/m3 (Islam et al., 2020a). Pollutants, such as PM2.5 and
NO2 and to a lesser extent PM10, have been found to contribute to
COVID-19 and mortality rate, as potential triggers (Copat et al., 2020).
The COVID-19 induced death rate was reported to be positively associ-
ated with economic variables, such as the countries' gross domestic
products (Lippi et al., 2020), income, and Gini's inequality index
(Mukherji, 2020). Moreover, social and health parameters, including
old age, male gender, ethnicity, comorbidities (diabetes, cancer and
other chronic-degenerative disorders) have been found to correlate
with COVID-19 fatality rate.

The growth rate of an infectious disease for a country is an important
measure of how it spreads in the country and the time atwhich the peak
value occurs. It is usually estimated by fitting the cumulative number of
cases of the initial growth phase of the disease to exponential, logistic,
Richard's and delayed logistic models (Chowell et al., 2003; Ma et al.,
2014; Mills et al., 2004; Roberts and Heesterbeek, 2007; Nishiura
et al., 2009). Since the number of cumulative cases for COVID-19, ini-
tially grows exponentially, but eventually slows and approaches a
limit, the dynamics is qualitatively similar to that of a logistic curve.
Thus, we estimate the growth rate of COVID-19 for the first ‘wave’ for
each country by applying the logistic model and using the least-
squares fitting method.

As previously mentioned, and briefly over-viewed, several studies
have performed various analyses with the objective of identifying pre-
dictors of the outbreak and the effectiveness of the response of the dif-
ferent countries to the pandemic. However, to the best of our
knowledge, no investigation has assessed all the variables in a whole
picture, whereas it can be expected that there is a subtle and complex
interplay among the various parameters. Moreover, it has not been
done in a systematicway at the global level, utilizing a cross-country ap-
proach. As such, we aim at analysing how the implementation of NPI as
well as climatic, social, and demographic variables affected the growth
rate of COVID-19, to shed light on the covariates which may have a
larger influence on the initial growth and should therefore be investi-
gated further at both the global and national/sub-national scales. This
work is not meant to be exhaustive or definitive, but rather to help re-
veal baseline epidemiological differences across countries, shape the di-
rection of further research on COVID-19 and potential future outbreaks,
and understand infectious disease transmission in general.

2. Material and methods

The data was collected on July 29, 2020 and used in a correlational
study to determine the effects of government interventions as well as
demographic, social, and climatic variables on the growth rate of
COVID-19.

2.1. The growth rate of COVID-19

The growth rate of COVID-19 for thefirst ‘wave’ for each countrywas
estimated by fitting the rate of change in cumulative cases of a logistic
growth model to daily confirmed cases data obtained from Our World
in Data Coronavirus (COVID-19) Cases dataset using the least-squares
fitting method (https://ourworldindata.org/coronavirus-data). We

https://ourworldindata.org/coronavirus-data


J. Duhon, N. Bragazzi and J.D. Kong Science of the Total Environment 760 (2021) 144325
chose a logisticmodel becausemechanisticmodels (like compartmental
ones, such as the Susceptible-Infectious-Recovered/Removed or SIR
model and its variants) require a complex parametrization procedure,
which is characterized by a high degree of uncertainty, especially during
the early phases of a pandemic, due to the lack of detailed data. Phe-
nomenological models, instead, being data-driven, do not suffer from
such shortcomings. Moreover, among the four most commonly
employed phenomenological models (namely, exponential, Richards,
logistic and delayed logistic models), the logistic one tends to outper-
form (Ma et al., 2014). Logistic models have been utilized to model
COVID-19 epidemic growth, using generalized equations to capture dif-
ferent growth curves in various countries (following an exponential
growth in the Americas and in Australia, and a power law growth in
most European countries) (Bertozzi et al., 2020; Pelinovsky et al.,
2020). For instance,Wu and colleagues (Wuet al., 2020), employing dif-
ferent models (namely, the logistic growth model and its generalized
variant, the generalized growth model and the generalized Richards
model) showed the feasibility of utilizing the logistic model for
COVID-19 predictive modelling purposes. The model is, indeed, able to
provide reliable estimations of the upper and lower bounds of COVID-
19 related scenarios. Moreover, in several studies logistic models repre-
sent a basic essential component for building more sophisticated
models, based, for example, on machine learning and other artificial in-
telligence techniques (Pelinovsky et al., 2020; Zreiq et al., 2020).

More in detail, in the logistic model, the cumulative number of cases
c(t) is assumed to satisfy the following equation:

c0 tð Þ ¼ rc tð Þ 1−
c tð Þ
K

� �

where K is the epidemic sizewhich c(t) approaches, r is the speed of the
epidemic growth (the response variables). Solving this, we have that:

c tð Þ ¼ K

1þ K
c 0ð Þ−1
h i

e−rt
,

where c(0) is the initial number of cases. The change in cumulative
cases that is fitted to the 7-day rolling mean of daily confirmed cases
is given as I(t) = c(t + t) − c(t), where t is a small increment in time,
which we choose to be one day. The change in cumulative cases is cho-
sen instead of the cumulative number of cases because observations
drawn from the same cumulative curve are correlated. From a mathe-
matical perspective, cumulative and change in cumulative curves carry
the same information, but from a statistical perspective, they do not.
Most curve fitting algorithms (including least square fitting) assume
that the errors in individual observations are statistically independent.
This assumption is not true for cumulative curves, where each observa-
tion contains all of the cases from prior observations. We truncate all
time series on the daywith the highest daily count, because some coun-
tries have lingered near peak daily count for much longer than a logistic
growth model would predict, which would pull the model peak later
than the actual date of peak incidence and thereby underestimate r.
We included all countries with at least a 6-day period of at least 30 daily
cases as of April 23, 2020, after truncating at the peak. We eliminated
countries whose logistic growth model R2 was less than 0.94. Some
countries do not report daily cases, may have variable reporting delays,
and may have changed reporting methods resulting in dramatic spikes
in cases for particular dates. To account for these inaccuracies, we
used the 7-day rolling average (right aligned) for daily cases
(https://ourworldindata.org/coronavirus-data). To estimate the
growth rate, we used the scipy.optimize.curve_fit function in Python.

2.2. Non-pharmaceutical interventions

Weconsulted the OurWorld in data Policy Responses to the Corona-
virus Pandemic datasets to extract the various NPI implemented, which
3

include: school and workplace closures, cancellation of public events
and gatherings, stay-at-home orders, and international and domestic
travel restriction (https://ourworldindata.org/coronavirus-data). Each
NPI is an indicator recorded on an ordinal scale where the larger the
index, the stricter the policy. The mean of each NPI was taken from
the date of the first known case to the date of maximum new cases for
each country (although any country that has begun a second wave
may have the NPI averaged from the first known case to a short time
span after the maximum).

The NPI index can be found here https://github.com/OxCGRT/covid-
policy-tracker/blob/master/documentation/codebook.md.
2.3. Climatic, social, and demographic variables

The data for the climatic, social, and demographic variableswere ex-
tracted from theWorld Bankwebsite (http://datatopics.worldbank.org/
universal-health-coverage/coronavirus/). These are pre-existing coun-
try characteristicswhich can impact the growth phases of COVID-19, al-
though not implying causation. We did not attempt to include all
possibly relevant covariates because of high correlations even among
a limited set, and because the limited number of countries dictate that
a small subset should be preselected in order to retain sufficiently pos-
itive degrees of freedom for statistical analyses. For each predictor, we
used the most recent available data, which ranged from 2000 to 2019.
The climatic, social, and demographic factors used are presented in
Table 2.
2.4. Statistical analysis

Data with highly skewed distributions were log-transformed and all
distributions were centered and standardized. The covariates are stan-
dardized for effect comparisons. After compiling the variables, we
model the relationship between the covariates and initial growth rate
of COVID-19 using a multiple linear regression model. To achieve this,
we use the lm() function in RStudio1.2.5033. The general formula of a
multiple linear regression model is given as follows:

yi ¼ β0 þ β1xi1 þ β2xi2 þ β3xi3 þ . . .þ βpxip þ ε

where, for i = 1 to n observations:
yi= response variable

xij ¼ covariates; where j ranges from 1 to
p ðp being the total number of covariatesÞ

β0= constant term (y-intercept).
βj(j from 1 to p) = slope coefficients for each explanatory variable.
ε=the model's error term (also known as the residuals).
To ensure that our covariates provide unique or independent infor-

mation in the regression model, we removed covariates with severe
correlationwith other covariates in themodel. To this end, we calculate
the variance inflation factor (VIF) of the covariates using the VIF() func-
tion in RStudio1.2.5033. This function takes as input a linear regression
and calculates the variance inflation factor of the covariates.We sequen-
tially eliminated covariates with the highest VIF from the model until
the VIF of all covariates was less than 5. Following VIF analysis, we per-
formed both forward and backward stepwise variable selection, using
the function step in RStudio1.2.5033. For the range of models to exam-
ined in the stepwise search, we instruct the algorithm to consider all
models from the constant model, to the model with all the covariates.

https://ourworldindata.org/coronavirus-data
https://ourworldindata.org/coronavirus-data
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
http://datatopics.worldbank.org/universal-health-coverage/coronavirus/
http://datatopics.worldbank.org/universal-health-coverage/coronavirus/


Fig. 1. Estimated initial growth rate of COVID-19 across the globe. White countries are not included in our analysis.
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3. Results

3.1. Estimation of initial growth rate

Fig. 1 shows a map of the initial growth of COVID-19 across coun-
tries. The plotted estimate at each time is based on a fitting window
from time t = 0 until peak time. Fig. 2 pictorially illustrates the
COVID-19 time-course dynamics in 8 countries, those with the lowest
initial growth rate (first four) and those with the highest initial growth
rate (last four). Figs. S1–S4 show growth curves fitted to the observed
time series for daily confirmed cases for all the remaining countries con-
sidered. Only countries whose logistic growth model had an R2 of
greater 0.94 were considered. For the countries considered, the growth
rate has maximum values in South Korea, Australia and Luxemburg,
with 0.315, 0.302 and 0.275, respectively, and minimum values in
Ghana, Indonesia, and Panama with 0.023, 0.028, 0.030, respectively.
Fig. 2. The time course dynamics of COVID-19 in countries with the lowest initial growth rate (fi
top left to bottom right in order of increasing initial growth rate. The black dots represent mea

4

The mean initial growth rate is 0.120 with a standard deviation of
0.076. Ecuador (0.117), Belgium (0.134) and Iceland (0.136) initial
growth rate are closest to the mean initial growth rate of COVID-19.

3.2. Statistical analysis

After performing VIF analysis and stepwise variable selection, the
following covariateswere removed: Air transport, Precipitation,Mortal-
ity rate from lower respiratory infections, Mortality rate from
infectious and parasitic diseases, Nurses andmidwives, Government In-
ternet filtering in practice, Public transit closures, International travel
controls, Public transit closures, Restrictions on gatherings, School clo-
sure, Stay-at-home requirements, Population total, Median age, Popula-
tion aged 65 and older, GDP per capita, and Diabetes prevalence. Fitting
the remaining covariates in Tables 1 and 2 to a multiple linear regres-
sion model, we obtained the results presented in Fig. 3 and Table 3.
rst four) and thosewith highest initial growth rate (last four). Countries are arranged from
sured incidence data and the red line simulated data.



Table 1
Descriptions and/or index explanations of each NPI.

NPI Scale Description

School closures 0 No measures taken
1 Recommended closing (not

enforced)
2 Required closing of only certain

levels (e.g. public schools, high
schools…)

3 Required closing of all levels
Workplace closures 0 No measures taken

1 Recommended closing and/or work
from home (not enforced)

2 Required closing and/or work from
home only for certain sectors or
categories of workers

3 Required closing and/or work from
home for all but for essential
workplaces (grocery…)

Cancellation of public events (public
events)

0 No measures taken
1 Recommended cancelling (but not

enforced)
2 Required cancelling public events

Restrictions on gatherings
(gatherings)

0 No restrictions
1 Restrictions on very large gatherings

of over 1000 people
2 Restrictions on gatherings between

101 and 1000 people
3 Restrictions on gatherings between

11 and 100 people
4 Restrictions on gatherings of 10

people or less
Public transit closures (public
transit)

0 No measures taken
1 Recommended closing or

significantly reducing
volume/route/means of
transportation that are available

2 Required closing
Stay-at-home requirements
(stay-at-home)

0 No measures taken
1 Recommended not leaving the

house (but not enforced)
2 Required not leaving the house with

exception of essential trips
(grocery.) or daily exercise

3 Required not leaving the house with
very little exception (ex: one person
leaves at a time, once per week…)

Restrictions on International
movement (restriction of
movement between
cities/countries) (International
Movement)

0 No measures taken
1 Recommended not to travel

between regions/cities (but not
enforced)

2 Restriction of internal movement
International travel controls
(restrictions on international
travel (foreign travellers, not
citizens) (Ban on Foreigners)

0 No restrictions
1 Screening at arrivals
2 Quarantine arrivals for some or all

regions
3 Ban arrivals from some regions.
4 Total border closure or ban on all

regions

Table 2
Climatic, social, and demographic factors.

Variable type Predictors

Demographic ➢ Median age (in years)
➢ Population aged 65 and older (% of population) (Old)
➢ Population total (Population)

Disease ➢ Diabetes prevalence (% of people ages 20–79 who have type
1 or type 2 diabetes) (Diabetes)

➢ Cardiovascular disease death rate (annual number of deaths
per 100,000 people) (Cardiovascular)

➢ Mortality rate from lower respiratory infections (per
100,000) (Respiratory Infections)

➢ Mortality rate from infectious and parasitic diseases (per
100,000) (Infectious Diseases)

Economic ➢ GDP per capita (measured in international $ in 2011 prices)
(GDP)

➢ GINI index (income inequality, 1 = high) (GINI)
➢ Ease of doing business index 2019 (1 = most business--

friendly regulations) (Business)
Environmental ➢ Temperature (oC January–March)

➢ Precipitation (mm January–March)
➢ PM2.5 air pollution, mean annual exposure (micrograms per

cubic meter) (Pollution)
Habitat ➢ Population in urban agglomerations of more than 1 million

(% of total population) (City)
➢ Urban population (% of total population) (Urbanization)

Health ➢ Life expectancy (in years)
➢ Hospital beds available (per thousand) (Hospital Beds)
➢ Nurses and midwives (per 1000 people) (Nurses)
➢ Global Health Security detection index (GHS)

Social ➢ Government Internet filtering in practice (4 = low) (Inter-
net Filtering)

➢ Air transport (passengers carried per capita)
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The model has an overall P-value of 2.089e-06, a multiple R-squared
value of 0.6633 and an adjusted R-squared value of 0.5734. These statis-
tical values indicate that the model has a good explanatory power. The
variables with positive correlation to growth rate are: Population in
urban agglomerations of more than 1 million, Temperature, Global
Health Security detection index, PM2.5 air pollutionmean annual expo-
sure, Life expectancy, Hospital beds available, and Workplace closures.
Thosewith a negative correlation to growth rate are: Urban population,
Ease of doing business index, and Restrictions on international move-
ment. The most significant variables are Population in urban agglomer-
ations of more than 1 million (p = 0.0235), PM2.5 air pollution mean
annual exposure (p= 0.0155), Life expectancy (p= 0.0351), and Hos-
pital beds available (p = 0.0038). Relative to other NPI in this model,
5

Restrictions on international movements was the only significant vari-
able with a p-value of p = 0.0617. Finally, Figs. 4 and 5 show world
heatmaps of variables under studywith a strong significant andmoder-
ate significant relationship to the initial growth rate of COVID-19,
respectively.

4. Discussion

The NPI put in place by governments alone do not seem to explain
the growth rate of COVID-19. Based on the available data, our results
show that growth rate is mostly explained by demographic, climatic,
and social variables. This can be due to the fact that the measures
were put in place after the growth rate has begun. The most significant
variables were Population in urban agglomerations, Air pollution, Life
expectancy, andHospital beds. Compared to other NPI in thismodel, Re-
strictions on international movement were borderline significant.

The Population in urban agglomeration of more that 1 million has a
positive correlation and a significant effect on the growth rate of COVID-
19. This is true particularly for territories in the Americas and in
Australia (Figs. 4 and 5). According to the CDC COVID-19 Response
Team, COVID-19 is transmitted primarily by respiratory droplets, so
population density might play a significant role in transmission (CDC
COVID Response Team, 2020). Keeping a safe distance from other peo-
ple can pose a challenge with higher population densities and it has
been shown that contact rate is proportional to population density
(Rocklöv and Sjödin, 2020). This finding is in line with some studies
which found a moderate association between population density and
COVID-19 spread in a number of countries including India (Bhadra
et al., 2020), and Algeria (Kadi and Khelfaoui, 2020) or utilizing mathe-
maticalmodelling (Rader et al., 2020). However, other studies could not
replicate such results, finding, on the contrary, an inverse (Hamidi et al.,
2020) or no association (Carozzi et al., 2020).

Air pollution also has a positive correlation and a significant effect on
growth rate. Air pollution is a catalyst in the transmission of COVID-19.
PM can act as a carrier of virus particles and spread the virus over 2m of



Fig. 3. The association between the initial growth rate of COVID-19 and the covariates selected using stepwise variable section and VIF.

Table 3
Summary of the multiple regression analysis results.

Estimate Std. error t-value p-value

Intercept 0.115906 0.023965 4.836 2.21e-05
City 0.026936 0.011409 2.361 0.0235
Urbanization 0.025540 0.012826 −1.991 0.0537
Temperature 0.013683 0.009923 1.379 0.1760
GHS 0.024504 0.012827 1.910 0.0637
Pollution 0.028141 0.011109 2.533 0.0155
Business 0.018335 0.11787 −1.556 0.1281
Life expectancy 0.028414 0.012999 2.186 0.0351
Hospital beds 0.033400 0.010831 3.084 0.0038
Workplace closure 0.035366 0.023912 1.479 0.1474
International movement 0.056492 0.029346 −1.925 0.0617
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distance (Sharma and Balyan, 2020). Some areas characterized by high
levels of air pollutions, such as India, China, Italy, Russia, Chile and
Qatar (Figs. 4 and 5), have, indeed, reported higher rates of COVID-19
cases, especially severe ones, with respect to territories with less pollu-
tion (Paital and Agrawal, 2020). On the other hand, evidence for previ-
ous coronavirus outbreaks is highly conflicting with some studies, such
as an important cluster randomized controlled trial (Carrión et al.,
2019) failing to find any correlation between household pollution and
infant viral carriage.

Life expectancy has a positive correlation and has a significant effect
on the growth rate of COVID-19. This can be explained by comparing
high-income vs. low-income countries. Although high-income coun-
tries have a longer life expectancy, this means that there is an ageing
population with many more people that are 70 years old or greater
(Schellekens and Sourrouille, 2020). It has been shown that elderly peo-
ple have a higher infection and death rate (Chen et al., 2020) while
younger people have shownmilder symptoms and even asymptomatic
infection (Velavan and Meyer, 2020). A recently published meta-
analysis that has pooled together more than half million of COVID-19
cases from different countries (China, Italy, Spain, UK, and New York
State, USA) has shown the impact of age on mortality, identifying the
threshold of age greater than 50 years and, in particular, greater than
60 years. This is parallel to our results that show a positive correlation
between life expectancy and growth rate of COVID-19, especially in
North America, Europe, China and Australia (Figs. 4 and 5). On the
other hand, the spread of the virus is expected to have a negative effect
on life expectancy, inverting the secular increasing trend (Marois et al.,
2020).

The number of hospital beds available has a significant effect on the
growth rate of COVID-19 andwas also found to be positively correlated.
On the one hand, one could expect that countries with higher numbers
of beds per hospitalmayhave experienced less pressure and strain,with
less need to implement drastic and stringent measures. On the other
hand, it has been shown that exceeding the number of hospital beds
and other health care capacities available can increase the spread of
COVID-19. This may also lead to a decrease in quality of care which
leads to inadequate access to ventilators and increase the case-fatality
ratio (Li et al., 2020). Our analysis shows a particularly strong correla-
tion in areas such as North America, China, Russia and Australia
(Figs. 4 and 5). This is in line with a study (Karaca-Mandic et al., 2020)
conducted in the USA that shows that an increase in non-intensive
care unit (ICU) bed use was associated with more COVID-19 deaths.
6

Among the NPI implemented by governmental authorities, only Re-
strictions on international movements were found to be borderline sig-
nificant. This is in line with a study, that has shown that these
restrictions likely have an effect on the containment of the epidemic
in Wuhan China in the early stages of COVID-19 (Tian et al., 2020).

All the other variables selected in the final model (namely, temper-
ature, GHS,workplace closures, urban population, and business closure)
may not have a strong significant impact on the initial growth rate of
COVID-19 (Fig. 5).

In our study, temperature has a positive but not a very significant
correlationwith the initial growth rate. This finding is in partial contrast
with the available literature that shows, for instance, that normal and
maximum temperature are positively and significantly correlated with
the number of COVID-19 cases (Menebo, 2020). Moreover, tempera-
ture, in particular, warm and wet climates could counteract, or at least
mitigate, the spread of COVID-19 transmission, even though this vari-
able alone could explain only a little portion of the variability in the
viral spread and the level of evidence was deemed to be low
(Mecenas et al., 2020).

Concerning the GHS, in our investigation, this index has a positive
correlation to the initial growth rate and matches the fact the higher
the GHS of a country, the more prepared it is to deal with an epidemic.
At the global level, its average score is 40.2 out of 100, indicating the
global preparedness to potential pandemics and outbreaks is weak.
Even though there is a certain degree of variability in the index with
high-income countries having an average value of 51.9, all countries



Fig. 4.World heat maps of variables under study with a significant relationship to the initial growth rate of COVID-19.
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should develop and implement more robust resilience and response
plans.

Regarding theurbanpopulation,we have found that it has a negative
correlation to the initial growth rate. Spatio-temporalmodelling studies
have shown that COVID-19 did not remain confined to gentrified set-
tings but spread quickly from urban areas to rural ones (Paul et al.,
2020). This could explain, at least partially, the lack of statistical signifi-
cance of this variable.

Concerning NPI, our study shows that measures such as those
concerning Businesses, orWorkplace closure are not correlated to a sig-
nificant control of the growth rate. These results are not in linewith that
found by Ferguson et al., showing that if school/workplace transmission
7

accounts for an assumed 50–60% of transmission, then policies such as
school closure should be quite effective (Ferguson et al., 2020). How-
ever, the existing scholarly literature reports also contrasting findings:
for instance, social distancing has been found to mitigate the spread of
COVID-19 (Islam et al., 2020b; Vokó and Pitter, 2020), whereas other
scholars could not replicate such findings (Wagner et al., 2020). Such
conflicting results may depend on different methods employed, time
periods studied as well as on the sample of countries selected. More-
over, it should be emphasized that most of these studies are ecological
studies, which are afflicted by the so-called ecological bias and do not
correct or adjust for confounding variables, or are based on specific
modelling assumptions.



Fig. 5.World heat maps of variables with a non significant relationship to the initial growth rate of COVID-19.
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In conclusion, there exist contrastingfindings concerning the drivers
and predictors of COVID-19 spread. The current study aimed at investi-
gating all variables altogether at a global level, using a systematic and
reproducible approach. However, despite these strengths, the present
study suffers from a number of limitations that should be properly ac-
knowledged. The major shortcoming is given by the assumption of a
constant growth rate, whereas it has been widely acknowledged that
the growth rate of COVID-19 changes over time,which could be affected
by various epidemiological, social, economic, and NPI factors, resulting
in a change of the growth rate over time for different countries. Future
8

studies should replicate the present findings utilizing time-varying
values of the growth rate.
5. Conclusion

Based on available data and the results obtained, NPI put in place by
governments around theworld alonemay not explain the initial growth
rate of COVID-19, whereas demographic, climatic, and social variables
play a greater role in the initial growth rate of the virus, although
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restrictions on international movement relative to other NPI had a rela-
tive significance in terms of the growth rate.
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